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S U M M A R Y  
A technique is presented for the numerical solution of quasi-one-dimensional, viscous, heat conducting, compressible 
Laval nozzle flows. A time-dependent finite difference scheme is used to integrate the unsteady flow equations yielding 
second-order accurate steady-state solutions. Several features of the shock wave solution are shown and discussed. 

1. Introduction 

In this paper, we shall calculate the unsteady flow in a convergent-divergent nozzle using a 
conditionally stable finite difference scheme. The fluid is considered to be viscous, heat con- 
ducting, and compressible and the flow is regarded as quasi-one-dimensional; i.e., the nozzle 
is considered to be long and slender with slowly varying cross-sectional area and small cross- 
flow velocities. The equation of state for a perfect gas is assumed valid and the ratio of the 
coefficients of specific heat is assumed to be constant. However, the temperature dependence 
of the viscosity and heat conductivity are taken into account. The boundary layer is assumed to 
be thin and thus the outer edge is essentially located at the nozzle wall. For  flows with sufficiently 
high viscosity, disregarding the viscous effects on the nozzle's walls may have an appreciable 
effect on the results. 

To solve problems of this type, one can use either an Eulerian formulation as given here or a 
Lagrangian one. The Lagrangian calculation has the advantage that it does not smear dis- 
continuities as does the Eulerian. On the other hand, its extension to multi-dimensional prob- 
lems is probably more complicated. 

A calculation of the flow in a divergent duct was made by Crocco [1]. His difference scheme 
is consistent with the steady-state differential equations but not with the time-dependent ones ; 
and, in addition, he assumes constant viscosity and heat conductivity. 

The numerical scheme we use is second-order accurate in space. In Section 4, which contains 
the numerical results, we shall discuss some limitations of schemes of this type for the solution 
of the Navier-Stokes equations. 

To start the calculation, we specify only the nozzle geometry and the upstream and down- 
stream flow conditions. Integration of the differential equations yields the flow field and shock 
structure as a function of time. 

2. Differential Equations 

Consider a convergent-divergent or Laval nozzle of slowly varying cross-sectional flow area 
A (x) as shown in Fig. 1, where the centerline of the nozzle lies along the x-axi~. The velocity 
components in the x- and y-directions are u and v, respectively; the direction of flow is from 
left to right. In the quasi-one-dimensional approximation, it is assumed that O/~x is small, the 
velocity component v normal to the mean flow direction is small compared to the total velocity, 
O/~y > O/~x, and only the average values of the flow variables are considered at each cross 

* This research was conducted under the sponsorship of the Office of Naval Research under Contract No. Nonr 
839(34), Project No. NR 061 135. 
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Figure 1. Section of quasi-one-dimensional Laval nozzle. 

section. The viscous effects on the nozzle's walls are disregarded. We define the average value 
of a quantity Q as 

= -~ Qdy.  (2.1) 

Neglecting body forces, the unsteady flow of a viscous, heat conducting, compressible fluid 
may be described by the following set of equations written in Cartesian tensor form using the 
summation convention : 
Continuity: 

M 8(pu) 
- -  + - 0 (2.2a) 
& 8Xj 

Momentum: 

8 (pui) + 8 (pui u~) 8p 8zik 
- + - -  (2.2b) 

8t  8Xj  8X i 8X k 

Energy: 

_ 8(~kuj) 8qk 8E a (euj) 8 (put) + (2.2c) 
~ + 8x~ 8x i 8xk 8x~ 

State: 

p = p R T  (2.2d) 

where 

[ 8ui 8uj ) 8u~ 
ri, = P~ ~jxj + ~ - + (# ' -2#)  8~x z 6ij (2.2e) 

E = �89 2 + p e (2.2 0 

qj = - k 8 T (2.2g) 
8X j"  

Here p, u, p and T are the density, velocity, pressure and temperature, respectively. The total 
energy per unit volume E is the sum of the kinetic energy �89 2 (we neglect �89 2 compared to 
�89 2) and internal energy p e. Also, R is the gas constant, k the thermal conductivity, p the 
coefficient of viscosity, and p' is the second coefficient of viscosity, sometimes called the 
dilatational viscosity, which we take to be zero. 

Equations (2.2a), (2.2b), and (2.2c) are now integrated with respect to y from y.= 0 to y = Ym2 
with the boundary conditions: 
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at y = 0 :  v = 0  

dy v 
at y = YA/2" dx u 

Integrating and applying the usual averaging procedure for small fluctuations from the mean 
(i.e., such as that used in deriving the governing equations for turbulent flow), we obtain the 
following three equations consistent with the quasi-one-dimensional approximation: 

~ (/SA) 0(fifiA) 
g ~ -  + gx - 0 (2.3a) 

(? 05~A)a(fiS~A) c~p ~ (  (?UA) (2.3b) 
o - - T  - +  - A x+ x 

o - - 7  - +  - 07-+  " 

Using Eqs. (2.2d) and (2.2 0 with e = cv T, we obtain the following two expressions' 

, = ( ~ - 1 )  (E - ~ )  (2.4a) 

cp fi 2 _-- (2.4b) 

where 7 = cp/cv (cp and cv are the specific heats at constant pressure and at constant volume, 
respectively) and N is the momentum tiff. Equations (2.4a) and (2.4b) are used to eliminate 
and Tfrom the system Eqs. (2.3a, b, c). 

Introducing a reference length L, velocity U, and density Po, the equations are nondimen- 
sionalized by defining the following dimensionless variables' 

x* x t* tU u* u p* 
L '  L ' U '  Po 

E A 
m * -  E * -  A * =  -~ 

p o U  ' po U2 ' " 

The coefficients of viscosity and heat conductivity are assumed to be proportional to the first 
power of the temperature : 

f i = # o T * ,  ~ = k o T *  

We find from the nondimensionalization that 

where Mo is the reference Mach number. 
The resulting nondimensionalized equations may then be written in vector form and for 

convenience, we no longer use stars for the dimensionless variables: 

w, = f ,  + Agx + Sx (2.5a) 

where the subscript notation for derivatives has been employed, A = A (x), and w is a vector 
function of x and t 

W ---- m A  

EA (2.Sb) 
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f and 9 are given nonlinear vector functions of w, i.e., 

- m A  
�9 mZA 

f =  
P 

7EmA m3 A 

(2.5c) 

9 =  ( ~ 1 0 

(2.5d) 

andS is given by 

0 

i 4 m 2 E 1 m 2 S =  3 R e A ( p ) x { 7 ( 7 - 1 ) M ~  

where Re and Pr are the Reynolds and Prandtl numbers, respectively. 
Note that the system given by Eq. (2.5a) cannot be written in conservation form. 

(2.5e) 

3. Difference Equations and Stability Analysis 

The difference equations to be discussed are defined on the half plane t > 0, - oo < x < 0% 
where {x+,= +_nAx, t i=t+iAt;  n, i=0, 1, 2, ...) define the uniformly spaced net points of 
the lattice. We call w~ = w(n Ax, t+ i At) the mesh function which is defined on this lattice and 
which constitutes an approximation to the solution of the differential equation (2.5a). 

Time-dependent difference methods that may be used for the solution of Eq. (2.5a) have been 
discussed by one of us in [2]. The two-step method used in this calculation is given below : 

t t At 
t+at W,+I+W, + [ f t + l _ f t  ] 

%+�89 - -  2 Axx 

(A,+ 12+A,_ ) At At + - ~ [gt,+l-g',] + ~ [S~+I-S',] (3.1a) 

,+4, [ 
w, = w~ + 2Ax k 2 

+ A, 2Ax k 2 

~et + At 4Pt + At 1 ~- Jn+�89 --dn-�89 

t+At t+At 7 At + -9~189 j + [s ' .+,-s ' ._ , ] .  (3.1b) 

The overall scheme has, second-order accuracy. 
For the stability analysis, we linearize Eq. (2.5a) by writing 

wt = (B + AF + O)wx + Cw~x 

where A = A (x) and 

B -  0f C -  •S D -  (?S F ~g 
~w' ~Wx' Ow' Ow 
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We regard A and the matrices B, C, D, and F as locally constant for purposes of the stability 
investigation and see under what conditions the eigenvalues of the amplification matrix are 
in magnitude less than one. In effect, we examine the equations for stability at a fixed point in 
the nozzle. The matrices B, C, D, and F for the nondimensionalized equations are given expli- 
citly as follows: 

B = 

0 - 1  0 

(7 - 3) rn 2 m (~ - 3) 7 - (~ - 2) 2p 2 

~E,, (~-  ~),.~ ~E 3(~,- 1)m ~ ~,,,, 
- -  _ _  - } -  

\ p2 p3 p 2pZ p 

C = 

F = 

0 m 
- c ~  7 ~ L  

§ 

o 1) 
cl  p 2 ]  m m 2 c 2 m 2 

0 0 0 )  
(7-  1) m2 m 

(~- 1 1 7  - ( ~ -  I1 2p 2 

0 0 0 

W e  list the 
j th column : 

d11= d 1 2 = d 1 3 = 0  

= c1 ~m I3 2m2~ 
dzl p3[p E - T J P ~  

q ):~3m 2 
d= = 7tLG-p - El " :m=~ } 

d23 

d31 

elements of the D matrix below, where d u is the element of the i th row and the 

cl{m } 
7 - 7  px+mx 

p ~ J  p -~1 mx 

+ [ 3 p 2 - 2 E I E x }  ~ { 7 -  2PJPX+m[ P 

_,_13 _ m:mq 

c2~1F3-m2 2 p , - - - m x + E  +cl  - 
p2 [p 1_ 2p p ~ p- p~+m~ . 

d32 

d33 
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The constants cl and c 2 are given by 

47(7-  1)M~ 72(7-1)M~ 
cl - 3Re  c2 - Re  Pr  

Note, however, that each term of matrix D involves a first derivative of the dependent variables. 
Then for smoothly varying solutions, the matrix D may be neglected as compared to B and 
F for the stability analysis. The linearized form that we consider is 

wt = (B + AF)  wx + Cwx~.  

The amplification matrix G for system (3.1) is given by 

G = I + 2 z (cos ~ ~ 1)(B + AF)  2 + 2e (cos ~ - 1) C 

+i{2(sin ~ ) ( B + A F ) + 2 e  (sin ~cos i - s i n  ~ ) ( B + A F ) C }  

where I is the unit matrix, ~ = l A x ,  2 = A t / A x ,  and e = A t / ( A x )  2. 
Calculation showed that it was always possible to find values of At such that the magnitude 

of the complex eigenvalues of G were less than one. The linearized version of the difference 
scheme is therefore stable. 

4. Numerical Results 

In the calculations, the computing region extends from x = 0 to x = 250. The convergent section 
of the Laval nozzle is located between x = 50 and x = 100 and the divergent section between 
x = 100 and x = 200 with constant area sections in the remaining regions. The nozzle throat is 
located at x = 100. The cross-sectional area A (x) decreases from 1.340 to 1.000 in the convergent 
section and increases to 1.668 in the divergent section. Throughout  the calculations we take 
7 = 1.4 and use the upstream end conditions as the reference state. 

The boundary conditions are prescribed as follows. At the upstream end (x = 0, 1), we require 
that conditions stay at their initial values: 

W'o + A' - _ Wtz+ A' = Wto " (4.1) 

The downstream boundary condition (x = 249, 250) determines the shock location. Since the 
solution must be allowed to adjust to its proper value, we fix the density but let the other 
variables adjust; i.e., we prescribe: 

t+At  t+At t = = = 
/3249 = /3250 : /3250, m~4-9 /'n~50 = m~48, E~49 E~50 E~48 �9 

For our first calculation, we considered a shock standing in the divergent section at x = 160. 
The initial conditions were calculated from the usual one-dimensional, inviscid isentropic flow 
relations on both sides of the shock and the Rankine-Hugoniot  relations were used across it. 
Figure 2 shows the results at time step 1500 for a Reynolds number of 5 and a Prandtl number 
of 3. The density (Fig. 2a) decreases with x in the convergent section and continues to do so in 
the divergent section up to the shock. Across the shock, the density increases sharply and 
continues to increase gradually in the remainder of the divergent section. The Mach number 
dismbution (Fig. 2b) shows that the subsonic flow in the convergent section is accelerated to 
sonic velocity at the throat and is further accelerated supersonically in the divergent section 
up to the shock. The flow becomes subsonic across the shock and decelerates in the remainder 
of the divergent section. A specification of the boundary conditions at the nozzle ends is 
sufficient to maintain a Mach number of unity at the throat. The pressure at the throat is 
0.528 which is the value obtained from the quasi-one-dimensional Laval nozzle equations for 
isentropic flow. The entropy (Fig. 2c) has a maximum since in the tail of the shock the time rate 
of heat loss by conduction exceeds the rate at which heat is gained by viscous dissipation, 
resulting in a decrease of entropy. 

The results are shown for A t / A x  0.2/1.0 which diffcrs by less than 1~/o at corresponding 
points fiom a mesh of twice that size. 
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To see if the numerical scheme could generate a discontinuous solution from continuous 
initial data, we prescribed the previously used upstream and downstream conditions at the 
end points of the nozzle subject to the boundary conditions (4.1) upstream and (4.2) down- 
stream. The initial distributions of p, m, and E in the nozzle were taken to vary linearly between 
the end conditions. The proper discontinuity and flow field appears but requires a longer 
computational time for convergence. 

We next considered the behavior of a standing shock solution with varying downstream 
density with the purpose of simulating a variation in back pressure. Figure 3 shows the density 
and Mach number distributions at time step 1500 for a Reynolds number of 5 and a Prandtl 
number of �88 with various downstream conditions. The curves for P25 o = 0.8188 correspond to 
the curves shown in Fig. 2. Decreasing the value of Pzso moves the shock downstream. As the 
value ofp25o is increased, the shock moves upstream, and for P25o = 1.0000 the shock is shown 
to stand slightly downstream of the throat. However, at time step 1500 the solution for  
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P2so = 1.0000 had not yet converged and further integration in time would be required to yield 
the expected subsonic shockfree solution. 

Variations in the Prandtl number yield only slight changes in the flow field. For all values 
of Pr greater than 3 the results remain virtually unchanged. 

For higher Reynolds numbers, a wavy pattern appears on either side of the shock as shown 
in Fig. 4. By choosing Ax  = l /Re,  the results are smooth for the higher Reynolds numbers 
(Fig. 5) but the shock is now considerably smeared out. We believe this wavy pattern results 
for the higher Reynolds numbers because the effect of the physical viscosity terms in the 
equations become small and the equations approach those of inviscid hydrodynamics which 
are hyperbolic in character. For these equations, the existence of the oscillations is well-known. 
They have been observed experimentally by Crocco [ 1] and Rubin and B urstein [2] and Kreiss 
[4, 5] has shown them to be expected on theoretical grounds also. In spite of the wavy behavior 
of the solution, a sharp shock is rather well defined (Fig. 4). On the other hand, choosing 
A x =  I /Re  leads to unrealistic shock thicknesses as observed in Fig. 5. This difficulty arises 
because there are two characteristic distances in the problem, i.e., the hydrodynamic distance 
based on the nozzle length and the shock distance based on the mean free path of the gas. 

The use of a technique of this type for the solution of multi-dimensional viscous, heat 
conducting, compressible flow problems has the advantage that only the specification of the 
flow geometry and initial and boundary conditions is required. The appearance or non- 
appearance of shocks arises automatically on numerical integration of the equations and no 
a priori specification is required. Because of the existence of two characteristic lengths in the 
problem and the use of the hydrodynamic length as the unit of distance in the numerical 
calculation, there will be a physically unrealistic smearing of all shocks. The overall accuracy of 
the scheme, however, will still be second-order. 
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